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Abstract. The Wide Field Infrared Survey Telescope (WFIRST) is a NASA flag-
ship mission scheduled to launch in mid-2020, with more than one year of its lifetime
dedicated to microlensing survey. The survey is to discover thousands of exoplanets
near or beyond the snowline via their microlensing light curve signatures, enabling a
Kepler-like statistical analysis of planets at ~1-10 AU from their host stars and poten-
tially revolutionizing our understanding of planet formation. The goal of our work is
to create an automated system that has the ability to efficiently process and classify
large-scale astronomical datasets that missions such as WFIRST will produce. In this
paper, we discuss our framework that utilizes feature selection and parameter optimiza-
tion for classification models to automatically differentiate the different types of stellar
variability and detect microlensing events.

1. Introduction

Microlensing is an important technique for exoplanet detection and characterization.
For a microlensing survey to be successful, the number of detected planets is propor-
tional to the number of microlensing events, which in turn depends on the density of
observable stars. The Galactic bulge is where the stellar surface density is highest.
So naturally, microlensing surveys should concentrate their efforts toward the bulge
to maximize the event rate. Traditionally, these surveys have been conducted at optical
wavelengths, which suffer from high dust extinction near the Galactic bulge. Observing
in the near-infrared (NIR) will mitigates the effects of high extinction, enabling obser-
vations closer to the Galactic center. Therefore to understand this potential, WFIRST
will conduct its microlensing survey in the NIR (1-2µm) . However, until recently there
has been little or no effort dedicated to microlensing surveys in the NIR. This means
we do not have mapping of the microlensing event rate near the galactic center in the
NIR, which makes it impossible to properly optimize WFIRST’s science yield. For
this reason, NASA’s Exoplanet Program Analyis Group (ExoPAG) identified a NIR mi-
crolensing survey as a key precursor activity for WFIRST Yee et al. (2014). The goal
of our work is to directly address these issues by determining the optimal target fields
for the WFIRST microlensing survey and developing data analysis tools to enhance the
science return of the survey. We propose a framework that could efficiently process
lightcurves extracted from the tens of millions of stars in a NIR survey and fully auto-
mate identification of microlensing events. In this paper, we will describe our approach
in developing a predictive model using machine learning to detect microlensing events
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and characterize properties of these events. The use of feature selection enables us to
learn which characteristics distinguish the different types of events and to classify high-
dimensional data more efficiently. We demonstrate our proposed method on datasets
acquired from UKIRT’s wide-field near-IR camera that surveys the galactic bulge.

2. Microlensing Survey

To study the detection of microlensing events, we started a NIR survey with the United
Kingdom Infrared Telescope (UKIRT), a 3.8-m telescope on Mauna Kea in Hawaii for
our investigation. UKIRT was initially started as a pilot study in support of the 2015
Spitzer microlensing campaign, and in 2017, the program was redirected to cover all po-
tential WFIRST fields, including the Galactic center. The full catalog of lightcurve data
collected during the UKIRT microlensing campaigns is publicly available in NASA Ex-
oplanet Archive.1 Shvartzvald et al. (2017) has shown to have successfully identified
the first five microlensing events in the NIR based on preliminary analysis on the 2016
UKIRT data.

To represent each lightcurve, we derived features using a grid-based approach for
microlensing fit, based on a method proposed in Kim et al. (2017). The model grid
utilizes the effective event timescale te f f and the event peak time t0, and each model
lightcurve is scaled by the source flux Fs and blended flux Fb to derive analytically the
best fit for each grid model. We utilize Markov Chain Monte Carlo (MCMC) techniques
to fit (approximately) large number of llightcurves more efficiently Foreman-Mackey
et al. (2013). is used to approximate fits for large number of llightcurves more effi-
ciently. We initially filter the survey data to identify lightcurves that exhibit evidence
for microlensing by comparing each microlensing fit against a straight line, provid-
ing their goodness of fit ∆x2 ≡ (x2

f lat − x2
microlens)/(x2

microlens/Npoints − 4) , where x2
microlens is

the microlensing fit and Npoints is the number of points in a lightcurve. ∆x2 furnishes
us with a simple way to select lightcurves with significant variability as potential mi-
crolensing candidates. Table 1 describes the list of features derived from evaluating
each lightcurve.

Figure 1. Examples of lightcurves Left: Microlensing, Center: Variable, Left: Glitch

3. Approach

The first step in building models for prediction is to obtain a set of groundtruths to train
our classifier on. To accomplish this task, we manually label each observation by visual
inspection using a The survey data was initially filtered using ∆x2 > 100, which resulted
in a subset of approximately 30,000 potential microlensing candidates. From this sub-
set, we manually labeled about 1,587 lightcurves into three types of events (or classes):

1https://exoplanetarchive.ipac.caltech.edu/docs/UKIRTMission.html
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microlensing, intrinsic stellar variability eventsmicrolensing), and spurious instrumen-
tal artifacts (glitches). This results in 137 microlensing events, 1,083 variables, and 367
glitches. The rest of the unlabeled unlabeled lightcurves are used as test candidates for
detection. Fig 1 depicts examples of the lightcurve from each of these events.

3.1. Classification with Feature Selection and Model Selection

We investigate on building a classifier using features listed in Table 1 with a focus on
identifying microlensing events more effectively. To evaluate the performance of var-
ious classification algorithms to include in our recognition system, we examined three
classification methods: Random Forest (RF), and Support Vector Machine (SVM), K-
Nearest Neighbor (kNN), along with feature selection and model selection to optimize
the classifiers’ parameters.

When using a large number of features, there might be potentially irrelevant fea-
tures that could negatively impact the quality of classification. Adding more features is
not always helpful; as the number of features increases, the number of dimensions in
the search space also increases, resulting in the data points becoming more sparse. We
use feature selection to choose a more effective subset of features, which can reduce
the overall computational cost and running time, as well as achieve an acceptable, if
not higher, recognition rate. Instead of performing an exhaustive search of all features,
we use a greedy backward elimination feature selection algorithm for our experiments.
To perform model selection, we used grid search and varied the model parameters for
each classifier, such as varying the number of trees in a forest, depth of each tree, kernel
function, regularization constants, model constraints, etc. Model selection is incorpo-
rated at each iteration of the feature selection process to learn the optimal parameters for
each classifier type and feature set. Our approach is developed based on the classifiers
and model selection methods from Scikit-learn and feature selection from MLxtend.2

Figure 2. The effect classification F1-score as the number of features are removed.

For our experiment, we used the filtered dataset from 2017 UKIRT survey, and
trained the classifiers to differentiate betweenmicrolensing, variable, and glitch. We
used 3-fold cross-validation for model selection and feature selection. Data are nor-
malized using zero mean and unit variance. F1-score was used for evaluation met-
ric. F1-score is the harmonic average of the precision and recall, defined as F1 =

2/(recall−1 + precision−1). Fig 2 shows the plots of the F1-score with respect to each
class, as the number of features decreases. To obtain the F1-score for each class, the

2Scikit-learn: scikit-learn.org, MLxtend: http://rasbt.github.io/mlxtend
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averaged F1-score is weighted relative to the amount of actual observations in each
class. The classification results are summarized in Fig.3. We found results using SVM
and RF to be similar with RF performing slightly better overall. To demonstrate the
performance of our detector, we focus on using RF. The selected model parameters Θs
utilizes 500 number of trees in a forest, max. depth of 4 for each tree, entropy crite-
ria, and max log2(N f eatures) features at each split. Features listed in Table 1 with (**)
were pruned in the feature selection process. Fig 4 illustrates the lightcurves detected
as microlensing event , from the set of unlabeled test candidates, using Θs with class
probability (of being microlensing) pm(x) ≥ 0.8. Each lightcurve plot is ranked from
highest to lowest (left to right, top to bottom).

Figure 3. Examples of detected microlensing events from unlabeled test candidates,
ranked by highest to lowest pm(x) from left to right, top to bottom.

Figure 4. Examples of detected microlensing events from unlabeled test candidates,
ranked by highest to lowest pm(x) from left to right, top to bottom.

4. Conclusions and Future Work

This paper investigates techniques for developing a microlensing detection pipeline us-
ing the proposed features. The classification system was successful in classifying the
different types of events. We also found that using high number of features is not always
beneficial to classification. In using forward feature selection we were able to achieve
a slightly higher recognition rate, improving the overall classification. Currently we
are developing a framework for injecting mock stars with microlensing signals into the
UKIRT images to evaluate detection efficiency. Our ongoing work includes incorporat-
ing active learning into our system to improve classification performance of lightcurves
by automatically selecting most informative unlabeled lightcurves, visually label the
selected lightcurve, and then re-train our prediction models. To assure our ability to
transfer our findings from UKIRT to WFIRST effectively, we plan to incorporate do-
main adaptation to bridge any differences between the two surveys.
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Table 1. List of features. (**) indicates exclusion from Selected features set for exp. in Fig 4
Feature Description
Asin amplitude of sinusoidal fit
σA fractional uncertainty in A
b intercept of linear fit
σb uncertainty in b
χ2

baseline χ2 for a constant-flux fit
χ2

microlens (**) χ2 for microlensing (mcmc fit)
χ2

drop1 χ2 for a constant-flux fit, dropping the worst point

χ2
drop2 (**) χ2 for a constant-flux fit, dropping two worst points

χ2
microlens χ2 for microlensing (mcmc fit)
χ2

reduced χ2 for microlensing fit / degrees of freedom
χ2

sin χ2 for a sinusoidal fit
χ2

linear χ2 for a linear fit
∆χ2

grid χ2 for microlensing (grid fit)

∆χ2
drop2 significance level for drop-2-points vs constant-flux

∆χ2
drop1,drop2 significance level for drop-1-point vs drop-2-points

∆χ2
microlens significance level for microlensing (mcmc fit) vs constant-flux fit

∆χ2
sin,ulens significance level for sinusoidal vs microlensing fit

∆χ2
sin (**) significance level for sinusoidal vs constant-flux fit

∆χ2
linear,ulens significance level for linear vs microlensing fit

∆χ2
linear significance level for linear vs baseline fit

σ flux dispersion
∆Fdata (**) range of fluxes within the data
∆Fmodel (**) rrange of fluxes within the model fit
Fsin median flux of sinusoidal fit
σF (**) uncertainty in Fsin
Fmax maximum observed flux
Ftot (**) source flux (mcmc fit)
σFtot uncertainty in Ftot
f1 first flux parameter (grid fit)
f2 second flux parameter (grid fit)

Feature Description
fb blending fraction (mcmc fit)
σ f b uncertainty in fb
m slope of linear fit
σm uncertainty in m
model 0 or 1, depending on grid-fit model regime (small/large u0)
N (**) number of successful observations
N f rac fraction of successful observations
Nmax number of observational epochs
Nhigh,2−σ (**) number of points 2-σ above the baseline
fhigh,2−σ (**) fraction of points 2-σ above the baseline
Nhigh,3−σ number of points 3-σ above the baseline
fhigh,3−σ (**) fraction of points 3-σ above the baseline
Psin period of sinusoidal fit
σP uncertainty in Psin
σP/P fractional uncertainty for period of sinusoidal fit
P/σP S/N for period of sinusoidal fit
Tsin (**) phase of sinusoidal fit
σT uncertainty in Tsin
tE microlensing event timescale (mcmc fit)
|t0 − tmid | − ∆t/2 (**) how far event falls from edge of observing window
(|t0 − tmid | − ∆t/2)/tE how far event falls from edge of observing window
σtE/tE fractional uncertainty in tE
σtE (**) uncertainty in tE
tE/σtE (**) S/N for tE
t0 (**) time of the microlensing event (mcmc fit)
σto uncertainty in t0
t0,grid time of the event (grid fit)
t0 − tmid how well event falls within observing window
(t0 − tmid )/tE how well event falls within observing window
|t0 − tmid | how well event falls within observing window
|t0 − tmid |/tE (**) how well event falls within observing window
te f f microlensing event timescale (mcmc fit)
u0 microlensing event impact parameter (mcmc fit)
σuo/u0 fractional uncertainty in u0
σuo uncertainty in u0
u0/σuo S/N for u0

5. References

References

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, Publications of the Astro-
nomical Society of the Pacific, 125, 306. 1202.3665

Kim, D. J., Kim, H. W., Hwang, K. H., Albrow, M. D., Chung, S. J., Gould, A., Han, C., Jung,
Y. K., Ryu, Y. H., Shin, I. G., Yee, J. C., Zhu, W., Cha, S. M., Kim, S. L., Lee, C. U.,
Lee, Y., Park, B. G., & Pogge, R. W. 2017, 1. 1703.06883

Shvartzvald, Y., Bryden, G., Gould, A., Henderson, C. B., Howell, S. B., & Beichman, C. 2017,
AJ, 153, 61. 1610.02039

Yee, J. C., Albrow, M., Barry, R. K., Bryden, G., Chung, S.-j., Gaudi, B. S., Gehrels, N., Gould,
A., Penny, M. T., Rattenbury, N., Skowron, J., Street, R., & Sumi, T. 2014, 1

Acknowledgments. The research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

1202.3665
1703.06883
1610.02039

